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Why is JPL interested in Additive Manufacturing of Heat Exchangers?

Self Portrait at “Okoruso” Drill Site; 

Taken by MAHLI on May 11, 2016 (Sol 1,338)

MPFL Plumbing
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Single-Phase Mechanical Pumped Fluid Loop (MPFL) thermal control architecture on last few Mars 

flagship missions including the Curiosity Rover launched November 2011 has been very successful!

Curiosity has 9 HXers



JPL’s Upcoming MPFL Projects Are Building upon the Recent 

Success of the Curiosity Rover Launched November 2011

Dec Jan’12 Feb Mar Apr May Jun Jul Aug

Rover Avionics Mounting Panel (RAMP) Temperatures during Cruise to Mars
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MPFL thermal control architecture very resilient despite dynamic thermal environments!



5 Upcoming JPL Missions with a MPFL Architecture1,2
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Mars 2020

Planned 

Europa Clipper

Cold Atom Lab

OCO-3

ECOSTRESS

Artist’s Concept



Current State of the Art for HX Fabrication at JPL
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MSL tube bonded to radiator

or tubes saddled in avionics mounting plate
• All touch labor

• Long lead times

• Very expensive

• Epoxy bond diminishes thermal 

performance & increases mass

Cold Atom Lab HXers

Curiosity Rover HX

Epoxy bonded Al tubes on Al structures with or without saddles…

Perfect application for metal 

Additive Manufacturing?



Considered 2 Types of Al Additive Manufacturing: UAM vs. DMLS

Ultrasonic Additive Manufacturing (UAM) Direct Metal Laser Sintering (DMLS)

• Creates net-shape solid parts using low 

temperature solid state ultrasonic metal 

welding and CNC contour milling

• 6ft x 6ft x 3ft build size permissible

• 15 to 30 cubic inch per hour print rate

• Tolerances within +/- 0.0005 inch

• Al 6061, Al 7075, copper, titanium, etc.

• Dissimilar metal joining (i.e., Cu-Al, Ti-Al, 

SS-Al)

• High temperature, full melting welding

• 10 in x 10 in x 13 in build size

• 0.4 to 1.8 cubic inch per hour print rate

• Tolerances within +/- 0.002 inch

• AlSi10Mg, Ti 6-4, SS 316L, Inconel 625, 

SS 17-4 PH

• Multiple unique parts can be built at same 

time minimizing cost

This presentation will not cover 

JPL’s recent DMLS effort, see Ref. 3. which

covers thermal performance improvements



2014 JPL Spontaneous R&TD Investigates Feasibility of UAM HX4
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Early study focused on hermeticity of Al 6061 foil strips (“tape”) consolidated over single 

pass coolant channels without support material… (burst pressure>800psi, He leak rate < 4E-8 scc/s)

Ports for burst & leak test



2014 JPL Spontaneous R&TD Investigates Feasibility of UAM HX4
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Helium mass 

spectrometer

UAM prototype

Helium bottle

Sniff probe

Helium pressurized 

UAM prototype
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welds in 

supported 

region

Feinfocus X-Ray

Hydrostatic Burst Test He Vacuum Leak Check

He Pressure Sniff Leak TestCFC-11 Thermal Flow Test

UAM prototype 

Burst failure at 

1725psi



2014 JPL Spontaneous R&TD Investigates Feasibility of UAM HX4
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9 layers of 

Al5052 T-0

Delamination in unsupported 

region over channel

Burst failure crack

Missing material
25 layers of 

Al6061 H18

Weld defects

Post burst testing cross section and magnification reveals internal weld defects and 

incomplete consolidation especially over unsupported channel, corroborating x-rays… 

BUT the part did pass burst > 800 psi and He leak rate < 5E-9 scc/s
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2014 JPL Spontaneous R&TD Investigates Feasibility of UAM HX4

• Proof of concept demonstrated & hermeticity 

requirements met

• UAM consolidation over supported regions 

metallurgically sound

• Defects were observed in the consolidated layers 

over unsupported spans - concerning from a crack 

propagation perspective; support material such as 

Cerrobend was recommended for further study

• Started investigating different cross sectional 

geometry for double pass design with Hot Isostatic 

Press (HIP) post-weld under a 2015 SBIR Phase I 

with Sheridan Solutions LLC

Despite some internal defects, determined UAM HX Feasible!

Insulated UAM 

prototype

R-11 Pump Cart

Data Acquisition

Heater Power Supply



2015 SBIR Phase I UAM HX Recap
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Although support material recommended, still a desire to attempt a clean build without it; 

concern was support material removal and working fluid compatibility with residual…

Images Courtesy of Sheridan Solutions LLC

• Investigated undercut end mills and custom channel 

roof inserts (with and without fins) - both proven 

feasible, HIPing also shown to have significant 

increase in burst pressures

• Double pass “J” geometry explored with positive 

hermetic results; foil “sheet” implemented rather than 

“tape” as vacuum methods improved

Undercut End Mills

Hot Isostatic Press
Custom Roof Insert

Finned Inserts

Double Pass Study

Coolant 

Channel



CT Scan of 2015 SBIR Phase I UAM HX Prototype
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While UAM HX without support material proved to be hermetic and robust, internal defects 

above channels still revealed cracking along first layer & widespread delamination in U bend

Delamination

Tear
Cracks



CT Scan of 2015 SBIR Phase I UAM HX Prototype 
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2016 SBIR Phase II UAM HX Study To Date

So… support material & cross section geometry revisited; HIP process improved–channel 

widths less than 0.2” seem to not require support material if HIPed; channels greater than 

0.2” benefit from both support material and HIP
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Design of Experiments, 

0.2”, Square, No Support Material

Support Material Removed Post Weld

HIP

0.38”, Undercut ball, Support Material

Various Cross Sections & Support Materials

Images Courtesy of Sheridan Solutions LLC



CT Scan of 2016 SBIR Phase II UAM HX Prototype
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CT Scan Comparison: Dec 2015 vs. May 2017
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Cracks

Crack 

Free

Localized 

Delamination

Phase I: Dec 2015 Phase II: May 2017

6061 Al

All Sheet

Water soluble support material

HIP

6061 Al

Sheet and Tape

No support material

HIP

Phase I: Dec 2015

Phase I: Dec 2015

Phase II: May 2017

Phase II: May 2017
Crack 

Free

Localized 

Delamination

Localized 

Delamination

Straight Channel Segments

U Bend Channel Segments

Widespread 

Delamination

Widespread 

Delamination & 

Cracking 

Excellent Progress! – much better control of all consolidation layers 

Burst pressure>4000, He Leak<5E-10 scc/sPhase II Images Courtesy of Mark Norfolk



Additional UAM HX Investigation: Active CryoCubeSat
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4 Pass UAM Radiator

Ricor K508

Lockheed Micro 

Cryocooler ~3U X 2U 

Radiator Panel

1U HX Prototype

Bubble Immersion Tests – No Leaks!

1U HX

JPL Smallsat Partnership with Dr. Charles Swenson of Utah State 

University – leverage AM to enable miniature MPFL accommodation 

of small cryocoolers for Smallsat IR science missions

H/W Images Courtesy of Mark Norfolk



Future Work

• Demonstrate UAM HXers still leak tight post thermal cycle and 

random vibration testing 

– The goal is to get this technology as close to TRL 6 as possible by next year so 

that it’s more likely future JPL missions (i.e. the planned Europa Clipper) can 

capitalize on it

• Development of test coupons for B-basis design allowables may 

ultimately be required for flight infusion

– Note CalRAM has done this for electron beam powder bed fusion of Ti 6Al-4V

• Build more challenging prototypes

– Perform more metallurgy, NDE, & DE

• Blend small DMLS HX part into a larger UAM HX part

• Investigate blended metal HXers (Cu-Al, Al-SS) 

• Fly, Fly, Fly!
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Concluding Remarks

• Due to repeatedly successful implementations on NASA Flagship Class 

Missions, single phase MPFLs are becoming more common place at JPL.  We 

are expecting the business base to grow and thus we are continuing to invest 

in MPFL relevant technology development.

• Aluminum Additive Manufacturing, namely UAM, is definitely worth leveraging 

for fabrication of complex liquid cold plate HXers.
– What are typically very expensive, highly unique, and long lead time assemblies requiring all 

touch labor can be reduced to single part count using more reliable automatic milling and 

welding for a fraction of the cost and time.

• SBIR funded projects can be incredibly successful when you have the right 

motivated team attempting to develop something that both NASA and Industry 

can equally benefit from.
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Questions?



Backup
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Partial List of Acronyms
• Al - Aluminum

• AM – Additive Manufacturing

• CAL – Cold Atom Laboratory

• CFC-11 – Trichlorofluoromethane, Freon-11

• CHEMIN – Chemistry & Mineralogy

• CNC – Computer Numerical Controlled

• DC – Direct Current

• DMLS – Direct Metal Laser Sintering

• ECOSTRESS – Ecosystem Spaceborne Thermal Radiometer Experiment on 

Space Station

• He – Helium

• HIP – Hot Isostatic Press

• HRS – Heat Rejection System

• HX – Heat Exchanger

• ISS – International Space Station

• JEM-EF – Japanese Experiment Module External Facility

• JPL – Jet Propulsion Laboratory

• MAHLI – Mars Hand Lens Imager

• MPFL – Mechanical Pumped Fluid Loop

• MSL – Mars Science Laboratory

• NASA – National Aeronautics and Space Administration

• NDE – Non Destructive Evaluation

• OBA – Optical Bench Assembly

• OCO – Orbiting Carbon Observatory

• PMO – Program Management Office

• PS&S – Propulsion, Safety, & Sustainment

• RAMP – Rover Avionics Mounting Plate

• R&TD – Research & Technology Development

• REMS – Rover Environmental Monitoring Station

• RIPA – Rover Integrated Pump Assembly

• RIPAS – Rover Integrated Pump Assembly System 

• SAM – Surface Analysis at Mars

• SS – Stainless Steel

• UAM – Ultrasonic Additive Manufacturing

• VAMP – Vertical Avionics Mounting Plate
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Summary
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Mars 2020 MPFL Details

Mars 2020 Heat Rejection &

Recovery System (HRS) Details

Working 

Fluid

CFC-11, R-11, Freon-11, 

Trichlorofluoromethane

MEOP 200 psia

Flow Rates
0.75 lpm @~8.5 psid* (Rover)

1.5 lpm @~8.5 psid* (Cruise)

Expected

mcp

15 W/oC (Rover) 

30 W/oC (Cruise)

Reynolds 

Numbers

3,000-8,000 (Rover)

6,000-16,000 (Cruise)

Convection 

Coefficients

300-500 W/m2oC (Rover)

700-1,000 W/m2oC (Cruise)

New RAMP HRS RoutingNew RAMP Layout for Mars 2020
* Pressure rise external to pump package

Rover HRS Loop

A. J. Mastropietro / JPL PS&S 2017 – May 22-25, 2017 26 / 23


